Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456494

RESUMO

Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.


Assuntos
Diferenciação Celular , Proteínas Correpressoras , Fatores de Transcrição Forkhead , Células de Purkinje , Peixe-Zebra , Animais , Diferenciação Celular/genética , Cerebelo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mamíferos , Neurônios/metabolismo , Células de Purkinje/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Genes (Basel) ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397245

RESUMO

Intellectual disability with speech delay and behavioural abnormalities, as well as hypotonia, seizures, feeding difficulties and craniofacial dysmorphism, are the main symptoms associated with pathogenic variants of the ZMYND11 gene. The range of clinical manifestations of the ZMYND phenotype is constantly being expanded by new cases described in the literature. Here, we present two previously unreported paediatric patients with neurodevelopmental challenges, who were diagnosed with missense variants in the ZMYND11 gene. It should be noted that one of the individuals manifested with hyperinsulinaemic hypoglycaemia (HH), a symptom that was not described before in published works. The reason for the occurrence of HH in our proband is not clear, so we try to explain the origin of this symptom in the context of the ZMYND11 syndrome. Thus, this paper contributes to knowledge on the range of possible manifestations of the ZMYND disease and provides further evidence supporting its association with neurodevelopmental challenges.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Criança , Humanos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Proteínas de Ciclo Celular/genética , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Mutação de Sentido Incorreto , Fenótipo , Síndrome
3.
J Clin Invest ; 134(6)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300709

RESUMO

Virtually all patients with BRAF-mutant melanoma develop resistance to MAPK inhibitors largely through nonmutational events. Although the epigenetic landscape is shown to be altered in therapy-resistant melanomas and other cancers, a specific targetable epigenetic mechanism has not been validated. Here, we evaluated the corepressor for element 1-silencing transcription factor (CoREST) epigenetic repressor complex and the recently developed bivalent inhibitor corin within the context of melanoma phenotype plasticity and therapeutic resistance. We found that CoREST was a critical mediator of the major distinct melanoma phenotypes and that corin treatment of melanoma cells led to phenotype reprogramming. Global assessment of transcript and chromatin changes conferred by corin revealed specific effects on histone marks connected to epithelial-mesenchymal transition-associated (EMT-associated) transcription factors and the dual-specificity phosphatases (DUSPs). Remarkably, treatment of BRAF inhibitor-resistant (BRAFi-R) melanomas with corin promoted resensitization to BRAFi therapy. DUSP1 was consistently downregulated in BRAFi-R melanomas, which was reversed by corin treatment and associated with inhibition of p38 MAPK activity and resensitization to BRAFi therapies. Moreover, this activity was recapitulated by the p38 MAPK inhibitor BIRB 796. These findings identify the CoREST repressor complex as a central mediator of melanoma phenotype plasticity and resistance to targeted therapy and suggest that CoREST inhibitors may prove beneficial for patients with BRAFi-resistant melanoma.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Fenótipo , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Proc Natl Acad Sci U S A ; 121(9): e2320129121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377195

RESUMO

Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.


Assuntos
Proteínas de Ligação a DNA , Proteínas Repressoras , Humanos , Feminino , Masculino , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Correpressoras/genética , Correpressor 2 de Receptor Nuclear/genética , Tretinoína/farmacologia , Anticoncepção , Correpressor 1 de Receptor Nuclear
5.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38296633

RESUMO

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Assuntos
Anormalidades Múltiplas , Domínio BTB-POZ , Anormalidades Craniofaciais , Displasia Ectodérmica , Face/anormalidades , Humanos , Mutação , Anormalidades Craniofaciais/genética , Mutação de Sentido Incorreto/genética , Síndrome , Proteínas Correpressoras/genética
6.
Mol Plant Microbe Interact ; 37(3): 190-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38205771

RESUMO

Transcriptional corepressors form an ancient and essential layer of gene expression control in eukaryotes. TOPLESS and TOPLESS-RELATED (TPL/TPR) proteins constitute a conserved family of Groucho (Gro)/thymidine uptake 1 (Tup1)-type transcriptional corepressors and control diverse growth, developmental, and stress signaling responses in plants. Because of their central and versatile regulatory roles, they act as a signaling hub to integrate various input signaling pathways in the transcriptional responses. Recently, increasing pieces of evidence indicate the roles of TPL/TPR family proteins in the modulation of plant immunity. This is supported by studies on effectors of distantly related pathogens that target TPL/TPR proteins in planta. In this short review, we will summarize the latest findings concerning pathogens targeting plant TPL/TPR proteins to manipulate plant signaling responses for the successful invasion of their hosts. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição/genética , Plantas/metabolismo
7.
Oncogene ; 43(7): 524-538, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177411

RESUMO

Rhabdomyosarcoma tumor cells resemble differentiating skeletal muscle cells, which unlike normal muscle cells, fail to undergo terminal differentiation, underlying their proliferative and metastatic properties. We identify the corepressor TLE3 as a key regulator of rhabdomyosarcoma tumorigenesis by inhibiting the Wnt-pathway. Loss of TLE3 function leads to Wnt-pathway activation, reduced proliferation, decreased migration, and enhanced differentiation in rhabdomyosarcoma cells. Muscle-specific TLE3-knockout results in enhanced expression of terminal myogenic differentiation markers during normal mouse development. TLE3-knockout rhabdomyosarcoma cell xenografts result in significantly smaller tumors characterized by reduced proliferation, increased apoptosis and enhanced differentiation. We demonstrate that TLE3 interacts with and recruits the histone methyltransferase KMT1A, leading to repression of target gene activation and inhibition of differentiation in rhabdomyosarcoma. A combination drug therapy regime to promote Wnt-pathway activation by the small molecule BIO and inhibit KMT1A by the drug chaetocin led to significantly reduced tumor volume, decreased proliferation, increased expression of differentiation markers and increased survival in rhabdomyosarcoma tumor-bearing mice. Thus, TLE3, the Wnt-pathway and KMT1A are excellent drug targets which can be exploited for treating rhabdomyosarcoma tumors.


Assuntos
Rabdomiossarcoma , Humanos , Camundongos , Animais , Proteínas Correpressoras/genética , Histona Metiltransferases , Diferenciação Celular/genética , Rabdomiossarcoma/patologia , Antígenos de Diferenciação , Proliferação de Células/genética , Linhagem Celular Tumoral
8.
Proc Natl Acad Sci U S A ; 121(2): e2316104121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165941

RESUMO

The nuclear receptor corepressor (NCoR) forms a complex with histone deacetylase 3 (HDAC3) that mediates repressive functions of unliganded nuclear receptors and other transcriptional repressors by deacetylation of histone substrates. Recent studies provide evidence that NCoR/HDAC3 complexes can also exert coactivator functions in brown adipocytes by deacetylating and activating PPARγ coactivator 1α (PGC1α) and that signaling via receptor activator of nuclear factor kappa-B (RANK) promotes the formation of a stable NCoR/HDAC3/PGC1ß complex that coactivates nuclear factor kappa-B (NFκB)- and activator protein 1 (AP-1)-dependent genes required for osteoclast differentiation. Here, we demonstrate that activation of Toll-like receptor (TLR) 4, but not TLR3, the interleukin 4 (IL4) receptor nor the Type I interferon receptor, also promotes assembly of an NCoR/HDAC3/PGC1ß coactivator complex. Receptor-specific utilization of TNF receptor-associated factor 6 (TRAF6) and downstream activation of extracellular signal-regulated kinase 1 (ERK1) and TANK-binding kinase 1 (TBK1) accounts for the common ability of RANK and TLR4 to drive assembly of an NCoR/HDAC3/PGC1ß complex in macrophages. ERK1, the p65 component of NFκB, and the p300 histone acetyltransferase (HAT) are also components of the induced complex and are associated with local histone acetylation and transcriptional activation of TLR4-dependent enhancers and promoters. These observations identify a TLR4/TRAF6-dependent signaling pathway that converts NCoR from a corepressor of nuclear receptors to a coactivator of NFκB and AP-1 that may be relevant to functions of NCoR in other developmental and homeostatic processes.


Assuntos
Histonas , Fator 6 Associado a Receptor de TNF , Ativação Transcricional , Proteínas Correpressoras/genética , Histonas/genética , Histonas/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Transcrição AP-1/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
9.
Exp Mol Med ; 56(2): 251-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297159

RESUMO

H3.3, the most common replacement variant for histone H3, has emerged as an important player in chromatin dynamics for controlling gene expression and genome integrity. While replicative variants H3.1 and H3.2 are primarily incorporated into nucleosomes during DNA synthesis, H3.3 is under the control of H3.3-specific histone chaperones for spatiotemporal incorporation throughout the cell cycle. Over the years, there has been progress in understanding the mechanisms by which H3.3 affects domain structure and function. Furthermore, H3.3 distribution and relative abundance profoundly impact cellular identity and plasticity during normal development and pathogenesis. Recurrent mutations in H3.3 and its chaperones have been identified in neoplastic transformation and developmental disorders, providing new insights into chromatin biology and disease. Here, we review recent findings emphasizing how two distinct histone chaperones, HIRA and DAXX, take part in the spatial and temporal distribution of H3.3 in different chromatin domains and ultimately achieve dynamic control of chromatin organization and function. Elucidating the H3.3 deposition pathways from the available histone pool will open new avenues for understanding the mechanisms by which H3.3 epigenetically regulates gene expression and its impact on cellular integrity and pathogenesis.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Proteínas Correpressoras , Histonas , Chaperonas Moleculares , Fatores de Transcrição , Ciclo Celular , Divisão Celular , Cromatina/genética , Chaperonas de Histonas/genética , Humanos , Chaperonas Moleculares/genética , Proteínas Correpressoras/genética , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/genética
10.
Exp Cell Res ; 434(1): 113857, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008278

RESUMO

Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteínas Repressoras , Masculino , Animais , Camundongos , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Antígeno B7-H1/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/patologia , Carcinogênese/genética , Transformação Celular Neoplásica , Mutação , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Chaperonas Moleculares/genética , Proteínas Correpressoras/genética
11.
Anat Histol Embryol ; 53(1): e12974, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37767699

RESUMO

During fertilization, DAXX (death domain-associated protein) mediates histone variant H3.3 incorporation into heterochromatin, which plays an important role in the maintenance of genomic integrity. rDNA, the ribosomal gene, is included in the first wave of gene activation after fertilization. Our and other studies indicated that loss of Daxx disturbs rDNA heterochromatinization and promotes rDNA transcription without change in protein expression of H3.3. However, maternal and zygotic deletion of Daxx impairs blastocyst development. Whether Daxx knockdown affects H3.3 expression and improves the rDNA transcription in preimplantation development has not been reported. In the present study, we injected HA-labelled H3.3 (H3.3-HA) into oocytes during ICSI procedure, and detected H3.3 and DAXX by immunofluorescent staining. Then, we knockdowned Daxx and detected the gene expression levels of Daxx, H3.3, 18s and 47s rRNA. We also performed immunofluorescent staining of B23, γH2A and EdU incorporation to demonstrate nuclear structure, DNA damage and replication. We found injection of H3.3-HA did not impair preimplantation development. Daxx siRNA did not change expression of H3.3 mRNA, and the development of two-cell embryos and blastocysts, but the overall replication and expression levels of rRNA were increased compared with that in the control group. Finally, knockdown of DAXX did not aggravate the DNA damage but loosened the nucleolus. We concluded that Daxx knockdown promoted DNA replication and rDNA transcription, but did not affect H3.3 expression and subsequent preimplantation development.


Assuntos
Heterocromatina , Histonas , Camundongos , Animais , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Histonas/genética , Histonas/metabolismo , Heterocromatina/metabolismo , Blastocisto , Desenvolvimento Embrionário , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo
12.
Int J Gynecol Pathol ; 43(1): 33-40, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811828

RESUMO

Endometrial stromal tumors represent the second most common category of uterine mesenchymal tumors. Several different histologic variants and underlying genetic alterations have been recognized, one such being a group associated with BCORL1 rearrangements. They are usually high-grade endometrial stromal sarcomas, often associated with prominent myxoid background and aggressive behavior. Here, we report an unusual endometrial stromal neoplasm with JAZF1-BCORL1 rearrangement and briefly review the literature. The neoplasm formed a well-circumscribed uterine mass in a 50-yr-old woman and had an unusual morphologic appearance that did not warrant a high-grade categorization. It was characterized by a predominant population of epithelioid cells with clear to focally eosinophilic cytoplasm growing in interanastomosing cords and trabeculae set in a hyalinized stroma as well as nested and fascicular growths imparting focal resemblance to a uterine tumor resembling ovarian sex-cord tumor, PEComa, and a smooth muscle neoplasm. A minor storiform growth of spindle cells reminiscent of the fibroblastic variant of low-grade endometrial stromal sarcoma was also noted but conventional areas of low-grade endometrial stromal neoplasm were not identified. This case expands the spectrum of morphologic features seen in endometrial stromal tumors, especially when associated with a BCORL1 fusion and highlights the utility of immunohistochemical and molecular techniques in the diagnosis of these tumors, not all of which are high grade.


Assuntos
Neoplasias do Endométrio , Tumores do Estroma Endometrial , Sarcoma do Estroma Endometrial , Neoplasias Uterinas , Feminino , Humanos , Tumores do Estroma Endometrial/diagnóstico , Tumores do Estroma Endometrial/genética , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/química , Sarcoma do Estroma Endometrial/diagnóstico , Sarcoma do Estroma Endometrial/genética , Neoplasias Uterinas/patologia , Útero/patologia , Proteínas de Ligação a DNA/genética , Proteínas Correpressoras/genética , Proteínas Repressoras/genética
13.
Front Endocrinol (Lausanne) ; 14: 1235614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107517

RESUMO

Introduction: Pluripotent stem cells can be generated from somatic cells by the Yamanaka factors Oct4, Sox2, Klf4 and c-Myc. Methods: Mouse embryonic fibroblasts (MEFs) were transduced with the Yamanaka factors and generation of induced pluripotent stem cells (iPSCs) was assessed by formation of alkaline phosphatase positive colonies, pluripotency gene expression and embryod bodies formation. Results: The thyroid hormone triiodothyronine (T3) enhances MEFs reprogramming. T3-induced iPSCs resemble embryonic stem cells in terms of the expression profile and DNA methylation pattern of pluripotency genes, and of their potential for embryod body formation and differentiation into the three major germ layers. T3 induces reprogramming even though it increases expression of the cyclin kinase inhibitors p21 and p27, which are known to oppose acquisition of pluripotency. The actions of T3 on reprogramming are mainly mediated by the thyroid hormone receptor beta and T3 can enhance iPSC generation in the absence of c-Myc. The hormone cannot replace Oct4 on reprogramming, but in the presence of T3 is possible to obtain iPSCs, although with low efficiency, without exogenous Klf4. Furthermore, depletion of the corepressor NCoR (or Nuclear Receptor Corepressor 1) reduces MEFs reprogramming in the absence of the hormone and strongly decreases iPSC generation by T3 and also by 9cis-retinoic acid, a well-known inducer of reprogramming. NCoR depletion also markedly antagonizes induction of pluripotency gene expression by both ligands. Conclusions: Inclusion of T3 on reprogramming strategies has a potential use in enhancing the generation of functional iPSCs for studies of cell plasticity, disease and regenerative medicine.


Assuntos
Reprogramação Celular , Correpressor 1 de Receptor Nuclear , Células-Tronco Pluripotentes , Animais , Camundongos , Proteínas Correpressoras/genética , Fibroblastos/metabolismo , Hormônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Hormônios Tireóideos/metabolismo , Correpressor 1 de Receptor Nuclear/genética
14.
Commun Biol ; 6(1): 1267, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097664

RESUMO

Lysine-specific demethylase 1A (LSD1) binds to the REST corepressor (RCOR) protein family of corepressors to erase transcriptionally active marks on histones. Functional diversity in these complexes depends on the type of RCOR included, which modulates the catalytic activity of the complex. Here, we studied the duplicative history of the RCOR and LSD gene families and analyzed the evolution of their interaction. We found that RCOR genes are the product of the two rounds of whole-genome duplications that occurred early in vertebrate evolution. In contrast, the origin of the LSD genes traces back before to the divergence of animals and plants. Using bioinformatics tools, we show that the RCOR and LSD1 interaction precedes the RCOR repertoire expansion that occurred in the last common ancestor of jawed vertebrates. Overall, we trace LSD1-RCOR complex evolution and propose that animal non-model species offer advantages in addressing questions about the molecular biology of this epigenetic complex.


Assuntos
Histona Desmetilases , Lisina , Animais , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Vertebrados/genética , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo
15.
Cancer Lett ; 578: 216442, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852428

RESUMO

Hepatocellular carcinoma (HCC) is often associated with poor outcomes due to lung metastasis. ICAM-1+ circulating tumor cells, termed circulating cancer stem cells (CCSCs), possess stem cell-like characteristics. However, it is still unexplored how their presence indicates lung metastasis tendency, and particularly, what mechanism drives their lung metastasis. Here, we demonstrated that a preoperative CCSC count in 5 mL of blood (CCSC5) of >3 was a risk factor for lung metastasis in clinical HCC patients. The CSCs overexpressed with circ-CDYL entered the bloodstream and developed lung metastases in mice. Mechanistically, circ-CDYL promoted COL14A1 expression and thus ERK signaling to facilitate epithelial-mesenchymal transition. Furthermore, we uncovered that an RNA-binding protein, EEF1A2, acted as a novel transcriptional (co-) factor to cooperate with circ-CDYL and initiate COL14A1 transcription. A high circ-CDYL level is caused by HIF-1⍺-mediated transcriptional upregulation of its parental gene CDYL and splicing factor EIF4A3 under a hypoxia microenvironment. Hence, the hypoxia microenvironment enables the high-tendency lung metastasis of ICAM-1+ CCSCs through the HIF-1⍺/circ-CDYL-EEF1A2/COL14A1 axis, potentially allowing clinicians to preoperatively detect ICAM-1+ CCSCs as a real-time biomarker for precisely deciding HCC treatment strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/metabolismo , Hipóxia/genética , Células-Tronco Neoplásicas/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proliferação de Células , Microambiente Tumoral , Hidroliases/genética , Hidroliases/metabolismo , Proteínas Correpressoras/genética
16.
Int J Biochem Cell Biol ; 165: 106480, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884171

RESUMO

The occurrence of autophagy dysregulation is vital in the development of myelodysplastic syndrome and its transformation to acute myeloid leukemia. However, the mechanisms are largely unknown. Here, we have investigated the mechanism of the bcl6 corepressor mutation in myelodysplastic syndrome development and its transformation to acute myeloid leukemia. We identified a novel pathway involving histone deacetylase 6 and forkhead box protein O1, which leads to autophagy defects following the bcl6 corepressor mutation. And this further causes apoptosis and cell cycle arrest. The bcl6 corepressor-mutation-repressed autophagy resulted in the accumulation of damaged mitochondria, DNA, and reactive oxygen species in myelodysplastic syndrome cells, which could then lead to genomic instability and spontaneous mutation. Our results suggest that the bcl6 corepressor inactivating mutations exert pro-carcinogenic effects through survival strike, which is only an intermediate process. These findings provide mechanistic insights into the role of the bcl6 corepressor gene in myelodysplastic syndrome.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Fatores de Transcrição/metabolismo , Síndromes Mielodisplásicas/genética , Mutação , Autofagia/genética , Proteínas Correpressoras/genética
17.
J Bacteriol ; 205(10): e0027423, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37811985

RESUMO

Membranes are a universal barrier to all cells. Phospholipids, essential bacterial membrane components, are composed of a polar head and apolar fatty acid (FA) chains. Most bacterial FAs are synthesized by the Type II FA synthesis pathway (FASII). In Streptococcaceae, Enterococci, and Lactococcus lactis, a unique feedback mechanism controls the FASII gene expression. FabT, encoded in the FASII main locus, is the repressor, and it is activated by long-chain acyl-acyl carrier protein (acyl-ACP). Many Streptococci, Enterococcus faecalis, but not L. lactis, possess two ACPs. The AcpA-encoding gene is within the FASII locus and is coregulated with the FASII genes. Acyl-AcpA is the end product of FASII. The AcpB-encoding gene is in operon with plsX encoding an acyl-ACP:phosphate acyltransferase. The role of acyl-AcpB as FabT corepressor is controversial. Streptococcus pyogenes, which causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections, possesses AcpB. In this study, by comparing the expression of FabT-controlled genes in an acpB-deleted mutant with those in a wild-type and in a fabT mutant strain, grown in the presence or absence of exogenous FAs, we show that AcpB is the S. pyogenes FabT main corepressor. Its deletion impacts membrane FA composition and bacterial adhesion to eucaryotic cells, highlighting the importance of FASII control. Importance Membrane composition is crucial for bacterial growth or interaction with the environment. Bacteria synthesize fatty acids (FAs), membrane major constituents, via the Type II FAS (FASII) pathway. Streptococci control the expression of the FASII genes via a transcriptional repressor, FabT, with acyl-acyl carrier proteins (ACPs) as corepressor. Streptococcus pyogenes that causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections possesses two ACPs. acpA, but not acpB, is a FASII gene. In this study, we show that acyl-AcpBs are FabT main corepressors. Also, AcpB deletion has consequences on the membrane FA composition and bacterial adhesion to host cells. In addition to highlighting the importance of FASII control in the presence of exogeneous FAs for the adaptation of bacteria to their environment, our data indicate that FASII gene repression is mediated by a corepressor whose gene expression is not repressed in the presence of exogenous FAs.


Assuntos
Ácidos Graxos , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas Correpressoras/genética , Ácidos Graxos/metabolismo , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Mol Cell ; 83(19): 3421-3437.e11, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751740

RESUMO

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1ß with the NCoR/HDAC3 complex, resulting in the activation of PGC1ß and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


Assuntos
Osteoclastos , RNA , Humanos , Camundongos , Animais , Proteínas Correpressoras/genética , Osteoclastos/metabolismo , Ligante RANK/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Expressão Gênica
19.
Biomolecules ; 13(9)2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37759801

RESUMO

The presenilin-1 (PSEN1) gene is crucial in developing Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common cause of dementia. Circular RNAs (circRNAs) are non-coding RNA generated through back-splicing, resulting in a covalently closed circular molecule. This study aimed to investigate PSEN1-gene-derived circular RNAs (circPSEN1s) and their potential functions in AD. Our in silico analysis indicated that circPSEN1s (hsa_circ_0008521 and chr14:73614502-73614802) act as sponge molecules for eight specific microRNAs. Surprisingly, two of these miRNAs (has-mir-4668-5p and has-mir-5584-5p) exclusively interact with circPSEN1s rather than mRNA-PSEN1. Furthermore, the analysis of pathways revealed that these two miRNAs predominantly target mRNAs associated with the PI3K-Akt signaling pathway. With sponging these microRNAs, circPSEN1s were found to protect mRNAs commonly targeted by these miRNAs, including QSER1, BACE2, RNF157, PTMA, and GJD3. Furthermore, the miRNAs sequestered by circPSEN1s have a notable preference for targeting the TGF-ß and Hippo signaling pathways. We also demonstrated that circPSEN1s potentially interact with FOXA1, ESR1, HNF1B, BRD4, GATA4, EP300, CBX3, PRDM9, and PPARG proteins. These proteins have a prominent preference for targeting the TGF-ß and Notch signaling pathways, where EP300 and FOXA1 have the highest number of protein interactions. Molecular docking analysis also confirms the interaction of these hub proteins and Aß42 with circPSEN1s. Interestingly, circPSEN1s-targeted molecules (miRNAs and proteins) impacted TGF-ß, which served as a shared signaling pathway. Finally, the analysis of microarray data unveiled distinct expression patterns of genes influenced by circPSEN1s (WTIP, TGIF, SMAD4, PPP1CB, and BMPR1A) in the brains of AD patients. In summary, our findings suggested that the interaction of circPSEN1s with microRNAs and proteins could affect the fate of specific mRNAs, interrupt the function of unique proteins, and influence cell signaling pathways, generally TGF-ß. Further research is necessary to validate these findings and gain a deeper understanding of the precise mechanisms and significance of circPSEN1s in the context of AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , RNA Circular/genética , Doença de Alzheimer/genética , Presenilina-1/genética , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Epigênese Genética/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Correpressoras/genética
20.
Cell Death Dis ; 14(8): 565, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633949

RESUMO

Daxx functions as a histone chaperone for the histone H3 variant, H3.3, and is essential for embryonic development. Daxx interacts with Atrx to form a protein complex that deposits H3.3 into heterochromatic regions of the genome, including centromeres, telomeres, and repeat loci. To advance our understanding of histone chaperone activity in vivo, we developed two Daxx mutant alleles in the mouse germline, which abolish the interactions between Daxx and Atrx (DaxxY130A), and Daxx and H3.3 (DaxxS226A). We found that the interaction between Daxx and Atrx is dispensable for viability; mice are born at the expected Mendelian ratio and are fertile. The loss of Daxx-Atrx interaction, however, does cause dysregulated expression of endogenous retroviruses. In contrast, the interaction between Daxx and H3.3, while not required for embryonic development, is essential for postnatal viability. Transcriptome analysis of embryonic tissues demonstrates that this interaction is important for silencing endogenous retroviruses and for maintaining proper immune cell composition. Overall, these results clearly demonstrate that Daxx has both Atrx-dependent and independent functions in vivo, advancing our understanding of this epigenetic regulatory complex.


Assuntos
Desenvolvimento Embrionário , Chaperonas de Histonas , Feminino , Gravidez , Animais , Camundongos , Chaperonas de Histonas/genética , Desenvolvimento Embrionário/genética , Alelos , Centrômero , Chaperonas Moleculares/genética , Proteínas Correpressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...